Boundedness of second-order Riesz transforms on weighted Hardy and $BMO$ spaces associated with Schrödinger operators
Let $d \in \lbrace 3, 4, 5, \ldots \rbrace $ and a weight $w \in A^\rho _\infty $. We consider the second-order Riesz transform $T = \nabla ^2 \, L^{-1}$ associated with the Schrödinger operator $L = -\Delta + V$, where $V \in RH_\sigma $ with $\sigma > \frac{d}{2}$. We present three main results...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2021-01, Vol.359 (6), p.687-717 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $d \in \lbrace 3, 4, 5, \ldots \rbrace $ and a weight $w \in A^\rho _\infty $. We consider the second-order Riesz transform $T = \nabla ^2 \, L^{-1}$ associated with the Schrödinger operator $L = -\Delta + V$, where $V \in RH_\sigma $ with $\sigma > \frac{d}{2}$. We present three main results. First $T$ is bounded on the weighted Hardy space $H^1_{w,L}(\mathbb{R}^d)$ associated with $L$ if $w$ enjoys a certain stable property. Secondly $T$ is bounded on the weighted $BMO$ space $BMO_{w,\rho }(\mathbb{R}^d)$ associated with $L$ if $w$ also belongs to an appropriate doubling class. Thirdly $BMO_{w,\rho }(\mathbb{R}^d)$ is the dual of $H^1_{w,L}(\mathbb{R}^d)$ when $w \in A^\rho _1$. |
---|---|
ISSN: | 1778-3569 |
DOI: | 10.5802/crmath.213 |