Silicon in the form of nanosilica mitigates P toxicity in scarlet eggplant

Intensive fertilization of vegetables can promote phosphorus (P) toxicity. However, it can be reversed using silicon (Si), although there is a lack of research clarifying its mechanisms of action. This research aims to study the damage caused by P toxicity to scarlet eggplant plants and whether Si c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-06, Vol.13 (1), p.9190-9190, Article 9190
Hauptverfasser: Alves, Deyvielen Maria Ramos, de Oliveira, Jairo Neves, de Mello Prado, Renato, Ferreira, Patrícia Messias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intensive fertilization of vegetables can promote phosphorus (P) toxicity. However, it can be reversed using silicon (Si), although there is a lack of research clarifying its mechanisms of action. This research aims to study the damage caused by P toxicity to scarlet eggplant plants and whether Si can mitigate this toxicity. We evaluated the nutritional and physiological aspects of plants. Treatments were arranged in a 2 × 2 factorial design of two nutritional levels of adequate P (2 mmol L −1 of P) and toxic/excess P (8 to 13 mmol L −1 of P) combined with the absence or presence of nanosilica (2 mmol L −1 Si) in a nutrient solution. There were six replications. The excess P in the nutrient solution caused damage to scarlet eggplant growth due to nutritional losses and oxidative stress. We found that P toxicity can be mitigated by supplying Si, which decreases P uptake by 13%, improves C:N homeostasis, and increases iron (Fe), copper (Cu), and zinc (Zn) use efficiency by 21%, 10%, and 12%, respectively. At the same time, it decreases oxidative stress and electrolyte leakage by 18% and increases antioxidant compounds (phenols and ascorbic acid by 13% and 50%, respectively), and decreases photosynthetic efficiency and plant growth by 12% (by increasing 23% and 25% of shoot and root dry mass, respectively). These findings allow us to explain the different Si mechanisms used to reverse the damage caused by P toxicity to plants.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-36412-w