An Innovative Parabolic Trough Collector Design with a Twin-Cavity Receiver
An innovative parabolic trough concentrator coupled to a twin cavity receiver (PTC-TC) in evacuated tube conditions is investigated thermally and optically. The suggested design is compared with a PTC design with a flat receiver (PTC-F) in order to evaluate the efficiency of the proposed configurati...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2022-12, Vol.12 (24), p.12551 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An innovative parabolic trough concentrator coupled to a twin cavity receiver (PTC-TC) in evacuated tube conditions is investigated thermally and optically. The suggested design is compared with a PTC design with a flat receiver (PTC-F) in order to evaluate the efficiency of the proposed configuration. In the very first stages of the study, the optical efficiency was calculated for both collectors, and the optimum design was determined in the PTC-TC case. Then a mass flow rate independency procedure was conducted to ensure accurate results and to make a suitable comparison. The collectors were examined in a wide range of inlet temperatures ranging from 20 °C to 200 °C, and the thermal performance was calculated. Through the comparison process, it was revealed that the proposed collector appears to have higher thermal performance than the typical collector. In particular, there was a mean enhancement of approximately 8%, while the minimum enhancement was found to be greater than 5%. The simulation results regarding both configurations were verified through two models based on theoretical equations. In both geometries, the mean deviations in the verification procedure were lower than 5.6% in both the Darcy friction factor and the Nusselt number. The design and the simulations were conducted with the SolidWorks Flow Simulation tool. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app122412551 |