Genome-wide analysis of acute low salinity tolerance in the eastern oyster Crassostrea virginica and potential of genomic selection for trait improvement

As the global demand for seafood increases, research into the genetic basis of traits that can increase aquaculture production is critical. The eastern oyster (Crassostrea virginica) is an important aquaculture species along the Atlantic and Gulf Coasts of the United States, but increases in heavy r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:G3 : genes - genomes - genetics 2022-01, Vol.12 (1)
Hauptverfasser: McCarty, Alexandra J, Allen, Standish K, Plough, Louis V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the global demand for seafood increases, research into the genetic basis of traits that can increase aquaculture production is critical. The eastern oyster (Crassostrea virginica) is an important aquaculture species along the Atlantic and Gulf Coasts of the United States, but increases in heavy rainfall events expose oysters to acute low salinity conditions, which negatively impact production. Low salinity survival is known to be a moderately heritable trait, but the genetic architecture underlying this trait is still poorly understood. In this study, we used ddRAD sequencing to generate genome-wide single-nucleotide polymorphism (SNP) data for four F2 families to investigate the genomic regions associated with survival in extreme low salinity (
ISSN:2160-1836
2160-1836
DOI:10.1093/g3journal/jkab368