Microbial communities of Schisandra sphenanthera Rehd. et Wils. and the correlations between microbial community and the active secondary metabolites
Rehd. et Wils. is a plant used in traditional Chinese medicine (TCM). However, great differences exist in the content of active secondary metabolites in various parts of . Do microorganisms critically influence the accumulation of active components in different parts of ? In this study, 16S/ITS ampl...
Gespeichert in:
Veröffentlicht in: | PeerJ (San Francisco, CA) CA), 2024-04, Vol.12, p.e17240-e17240, Article e17240 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rehd. et Wils. is a plant used in traditional Chinese medicine (TCM). However, great differences exist in the content of active secondary metabolites in various parts of
. Do microorganisms critically influence the accumulation of active components in different parts of
?
In this study, 16S/ITS amplicon sequencing analysis was applied to unravel microbial communities in rhizospheric soil and different parts of wild
. At the same time, the active secondary metabolites in different parts were detected, and the correlation between the secondary metabolites and microorganisms was analyzed.
The major components identified in the essential oils were sesquiterpene and oxygenated sesquiterpenes. The contents of essential oil components in fruit were much higher than that in stem and leaf, and the dominant essential oil components were different in these parts. The dominant components of the three parts were
-muurolene,
-cadinol, and trans farnesol (stem);
-cadinol and neoisolongifolene-8-ol (leaf); isosapathulenol,
-santalol, cedrenol, and longiverbenone (fruit). The microbial amplicon sequences were taxonomically grouped into eight (bacteria) and seven (fungi) different phyla. Community diversity and composition analyses showed that different parts of
had similar and unique microbial communities, and functional prediction analysis showed that the main functions of microorganisms were related to metabolism. Moreover, the accumulation of secondary metabolites in
was closely related to the microbial community composition, especially bacteria. In endophytic bacteria,
and
had negative effects on five secondary metabolites, among which
-muurolene and trans farnesol were the dominant components in the stem. That is, the dominant components in stems were greatly affected by microorganisms. Our results provided a new opportunity to further understand the effects of microorganisms on the active secondary metabolites and provided a basis for further research on the sustainable utilization of
. |
---|---|
ISSN: | 2167-8359 2167-8359 |
DOI: | 10.7717/peerj.17240 |