Machine Learning to Identify Patients at Risk of Inappropriate Dosing for Renal Risk Medications: A Critical Comment on Kaas-Hansen et al [Response to Letter]
Benjamin Skov Kaas-Hansen,1-3 Cristina Leal Rodríguez,2 Davide Placido,2 Hans-Christian Thorsen-Meyer,2,4 Anna Pors Nielsen,2 Nicolas Dérian,5 Søren Brunak,2 Stig Ejdrup Andersen1 1Clinical Pharmacology Unit, Zealand University Hospital, Roskilde, Denmark; 2NNF Center for Protein Research, Universit...
Gespeichert in:
Veröffentlicht in: | Clinical epidemiology 2022, Vol.14, p.765-766 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Benjamin Skov Kaas-Hansen,1-3 Cristina Leal Rodríguez,2 Davide Placido,2 Hans-Christian Thorsen-Meyer,2,4 Anna Pors Nielsen,2 Nicolas Dérian,5 Søren Brunak,2 Stig Ejdrup Andersen1 1Clinical Pharmacology Unit, Zealand University Hospital, Roskilde, Denmark; 2NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark; 3Section for Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; 4Department of Intensive Care Medicine, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 5Data and Development Support, Region Zealand, DenmarkCorrespondence: Benjamin Skov Kaas-Hansen, Department of Intensive Care, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen, 2100, Denmark, Tel +45 60 19 68 01, Email epiben@hey.com View the original paper by Dr Kaas-Hansen and colleagues This is in response to the Letter to the Editor |
---|---|
ISSN: | 1179-1349 1179-1349 |
DOI: | 10.2147/CLEP.S375668 |