Zeeman effect in atmospheric O2 measured by ground-based microwave radiometry

In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O2 energy states, which polarizes the emission spectra. A special campaign was carried out in o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric measurement techniques 2015-04, Vol.8 (4), p.1863-1874
Hauptverfasser: Navas-Guzmán, F, Kämpfer, N, Murk, A, Larsson, R, Buehler, S A, Eriksson, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O2 energy states, which polarizes the emission spectra. A special campaign was carried out in order to measure this effect in the oxygen emission line centered at 53.07 GHz. Both a fixed and a rotating mirror were incorporated into the TEMPERA (TEMPERature RAdiometer) in order to be able to measure under different observational angles. This new configuration allowed us to change the angle between the observational path and the Earth magnetic field direction. Moreover, a high-resolution spectrometer (1 kHz) was used in order to measure for the first time the polarization state of the radiation due to the Zeeman effect in the main isotopologue of oxygen from ground-based microwave measurements. The measured spectra showed a clear polarized signature when the observational angles were changed, evidencing the Zeeman effect in the oxygen molecule. In addition, simulations carried out with the Atmospheric Radiative Transfer Simulator (ARTS) allowed us to verify the microwave measurements showing a very good agreement between model and measurements. The results suggest some interesting new aspects for research of the upper atmosphere.
ISSN:1867-1381
1867-8548
1867-8548
DOI:10.5194/amt-8-1863-2015