A High-Order Approximate Solution for the Nonlinear 3D Volterra Integral Equations with Uniform Accuracy

In this paper, we present a high-order approximate solution with uniform accuracy for nonlinear 3D Volterra integral equations. This numerical scheme is constructed based on the three-dimensional block cubic Lagrangian interpolation method. At the same time, we give the local truncation error analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2022-09, Vol.11 (9), p.476
Hauptverfasser: Wang, Zi-Qiang, Long, Ming-Dan, Cao, Jun-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a high-order approximate solution with uniform accuracy for nonlinear 3D Volterra integral equations. This numerical scheme is constructed based on the three-dimensional block cubic Lagrangian interpolation method. At the same time, we give the local truncation error analysis of the numerical scheme based on Taylor’s theorem. Through theoretical analysis, we reach the conclusion that the optimal convergence order of this high-order numerical scheme is 4. Finally, we verify the effectiveness and applicability of the method through four numerical examples.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms11090476