Construction of 4 x 4 symmetric stochastic matrices with given spectra

The symmetric stochastic inverse eigenvalue problem (SSIEP) asks which lists of real numbers occur as the spectra of symmetric stochastic matrices. When the cardinality of a list is 4, Kaddoura and Mourad provided a sufficient condition for SSIEP by a mapping and convexity technique. They also conje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open mathematics (Warsaw, Poland) Poland), 2024-03, Vol.22 (1), p.pp. 199-220
Hauptverfasser: Jung, Jaewon, Kim, Donggyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The symmetric stochastic inverse eigenvalue problem (SSIEP) asks which lists of real numbers occur as the spectra of symmetric stochastic matrices. When the cardinality of a list is 4, Kaddoura and Mourad provided a sufficient condition for SSIEP by a mapping and convexity technique. They also conjectured that the sufficient condition is the necessary condition. This study presents the same sufficient condition for SSIEP, but we do it in terms of the list elements. In this way, we provide a different but more straightforward construction of symmetric stochastic matrices for SSIEP compared to those of Kaddoura and Mourad.
ISSN:2391-5455
2391-5455
DOI:10.1515/math-2023-0176