Remote Sensing LiDAR and Hyperspectral Classification with Multi-Scale Graph Encoder–Decoder Network
The rapid development of sensor technology has made multi-modal remote sensing data valuable for land cover classification due to its diverse and complementary information. Many feature extraction methods for multi-modal data, combining light detection and ranging (LiDAR) and hyperspectral imaging (...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-10, Vol.16 (20), p.3912 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rapid development of sensor technology has made multi-modal remote sensing data valuable for land cover classification due to its diverse and complementary information. Many feature extraction methods for multi-modal data, combining light detection and ranging (LiDAR) and hyperspectral imaging (HSI), have recognized the importance of incorporating multiple spatial scales. However, effectively capturing both long-range global correlations and short-range local features simultaneously on different scales remains a challenge, particularly in large-scale, complex ground scenes. To address this limitation, we propose a multi-scale graph encoder–decoder network (MGEN) for multi-modal data classification. The MGEN adopts a graph model that maintains global sample correlations to fuse multi-scale features, enabling simultaneous extraction of local and global information. The graph encoder maps multi-modal data from different scales to the graph space and completes feature extraction in the graph space. The graph decoder maps the features of multiple scales back to the original data space and completes multi-scale feature fusion and classification. Experimental results on three HSI-LiDAR datasets demonstrate that the proposed MGEN achieves considerable classification accuracies and outperforms state-of-the-art methods. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16203912 |