Gallic acid improves the antioxidant ability against cadmium toxicity: Impact on leaf lipid composition of sunflower (Helianthus annuus) seedlings
In the present work, the effect of seed pre-soaking with gallic acid (GA; 3,4,5-triphydroxyl-benzoic acid) in conferring subsequent tolerance to Cd stress in sunflower (Helianthus annuus) seedlings was investigated. Exposing sunflower seedlings to increasing Cd concentrations (5, 10 and 20 μM) cause...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2021-03, Vol.210, p.111906, Article 111906 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, the effect of seed pre-soaking with gallic acid (GA; 3,4,5-triphydroxyl-benzoic acid) in conferring subsequent tolerance to Cd stress in sunflower (Helianthus annuus) seedlings was investigated. Exposing sunflower seedlings to increasing Cd concentrations (5, 10 and 20 μM) caused a gradual decrease in root and shoot biomass and increased the metal accumulation in both organs. Seed pretreatment with 75 µM GA significantly restricted Cd uptake, markedly alleviated Cd-induced plant growth inhibition, and mitigated the oxidative damages caused by this metal, as compared to plants directly exposed to Cd. GA pre-soaking prior to Cd stress also enhanced catalase, ascorbate peroxidase and glutathione reductase activities, while inhibiting that of superoxide dismutase. This was associated with increased levels of total thiols and glutathione along with a decreased level of oxidized glutathione in leaves. Moreover, GA pre-soaking led to changes in leaf fatty acid composition of seedlings challenged with Cd, as evidenced by the higher total lipid content and lipid unsaturation degree. As a whole, this study provides strong arguments highlighting the potential role of GA as a growth promoter for sunflower seedlings submitted to Cd stress, notably by boosting the antioxidant defense system and improving leaf membrane stability.
•Illustrate the toxic mechanism associated with short-term Cd exposure in sunflower plant leaves.•Characterize the Redox state and antioxidant system in sunflower plants exposed to cadmium.•Investigate the potential role of exogenous application of GA in modulating Cd-induced oxidative stress in sunflower seedlings. |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2021.111906 |