Dynamic Modeling and Cutting Stability of Rotating Tapered Composite Cutter Bar considering Material Damping
Traditional milling cutter bars are generally made up of metals and exhibit poor capacity of chatter suppression. This study proposes an anisotropic composites tapered cutter bar for increasing natural frequency and damping and finally achieves the goal of enhancing chatter stability. Based on Hamil...
Gespeichert in:
Veröffentlicht in: | Shock and vibration 2020, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional milling cutter bars are generally made up of metals and exhibit poor capacity of chatter suppression. This study proposes an anisotropic composites tapered cutter bar for increasing natural frequency and damping and finally achieves the goal of enhancing chatter stability. Based on Hamilton principle and Euler–Bernoulli beam theory, the partial differential motion equations of the cutting system with a 3D rotating tapered composite cutter bar are established. Next, using the Galerkin method, the equations of motion are discretized so as to derive ordinary differential equations. In the model, damping modeling of the composite cutter bar is achieved theoretically by using damping dissipation constitutive relations for viscoelastic composites. Moreover, by introducing the rotating effect of the 3D cutter bar in the 2-DOF analytical model of stability analysis first proposed for a fixed-type cutter bar, an improved prediction model is developed and used to solve the stability lobes of the cutting system in the frequency domain analytically. Furthermore, the influences of the gyroscopic effect, material, ply angle, stacking sequence, and taper ratio on chatter stability are also discussed. |
---|---|
ISSN: | 1070-9622 1875-9203 |
DOI: | 10.1155/2020/8816773 |