Efficient access to ultrafine crystalline metastable-β titanium alloy via dual-phase recrystallization competition
In order to reduce the deformation resistance, the rolling process of metastable β titanium alloys is generally carried out in the β single-phase state, which causes the problem of non-uniform grain size during the subsequent annealing process, thus affecting the alloy properties. Here we first solu...
Gespeichert in:
Veröffentlicht in: | Journal of materials research and technology 2024-03, Vol.29, p.335-343 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to reduce the deformation resistance, the rolling process of metastable β titanium alloys is generally carried out in the β single-phase state, which causes the problem of non-uniform grain size during the subsequent annealing process, thus affecting the alloy properties. Here we first solution-treated the as-cast Ti–15Mo–3Al-2.7Nb-0.2Si alloy at 740 °C to obtain α + β phase, then cold rolled it with a reduction of 60 %, and finally annealed it at 710–810 °C for 2–240min. Characterization of the annealed metastable β alloy revealed that α phase was involved in the rolling deformation at the same time and recrystallized on the β matrix during the subsequent annealing process, known as equiaxial dispersion, which impeded the recrystallization of the β grains, and ultimately an ultrafine crystalline microstructure of α + β phases with an average grain size of less than 2 μm was obtained. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2024.01.101 |