Identification of Apple Tree Leaf Diseases Based on Deep Learning Models

Early diagnosis and accurate identification of apple tree leaf diseases (ATLDs) can control the spread of infection, to reduce the use of chemical fertilizers and pesticides, improve the yield and quality of apple, and maintain the healthy development of apple cultivars. In order to improve the dete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2020-07, Vol.12 (7), p.1065
Hauptverfasser: Chao, Xiaofei, Sun, Guoying, Zhao, Hongke, Li, Min, He, Dongjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early diagnosis and accurate identification of apple tree leaf diseases (ATLDs) can control the spread of infection, to reduce the use of chemical fertilizers and pesticides, improve the yield and quality of apple, and maintain the healthy development of apple cultivars. In order to improve the detection accuracy and efficiency, an early diagnosis method for ATLDs based on deep convolutional neural network (DCNN) is proposed. We first collect the images of apple tree leaves with and without diseases from both laboratories and cultivation fields, and establish dataset containing five common ATLDs and healthy leaves. The DCNN model proposed in this paper for ATLDs recognition combines DenseNet and Xception, using global average pooling instead of fully connected layers. We extract features by the proposed convolutional neural network then use a support vector machine to classify the apple leaf diseases. Including the proposed DCNN, several DCNNs are trained for ATLDs recognition. The proposed network achieves an overall accuracy of 98.82% in identifying the ATLDs, which is higher than Inception-v3, MobileNet, VGG-16, DenseNet-201, Xception, VGG-INCEP. Moreover, the proposed model has the fastest convergence rate, and a relatively small number of parameters and high robustness compared with the mentioned models. This research indicates that the proposed deep learning model provides a better solution for ATLDs control. It could be also integrated into smart apple cultivation systems.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12071065