Exploring emerald global geochemical provenance through fingerprinting and machine learning methods
Emeralds – the green colored variety of beryl – occur as gem-quality specimens in over fifty deposits globally. While digital traceability methods for emerald have limitations, sample-based approaches offer robust alternatives, particularly for determining the geographic origin of emerald. Three fac...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence in geosciences 2024-12, Vol.5, p.100085, Article 100085 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Emeralds – the green colored variety of beryl – occur as gem-quality specimens in over fifty deposits globally. While digital traceability methods for emerald have limitations, sample-based approaches offer robust alternatives, particularly for determining the geographic origin of emerald. Three factors make emerald suitable for provenance studies and hence for developing models for origin determination. First, the diverse elemental chemistry of emerald at minor ( |
---|---|
ISSN: | 2666-5441 2666-5441 |
DOI: | 10.1016/j.aiig.2024.100085 |