Possible Intervals for T- and M-Orders of Solutions of Linear Differential Equations in the Unit Disc

In the case of the complex plane, it is known that there exists a finite set of rational numbers containing all possible growth orders of solutions of f(k)+ak-1(z)f(k-1)+⋯+a1(z)f′+a0(z)f=0 with polynomial coefficients. In the present paper, it is shown by an example that a unit disc counterpart of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2011-01, Vol.2011 (2011), p.4022-4046
Hauptverfasser: Chuaqui, Ma, Grohn, Janne, Heittokangas, Janne, Rattya, Jouni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the case of the complex plane, it is known that there exists a finite set of rational numbers containing all possible growth orders of solutions of f(k)+ak-1(z)f(k-1)+⋯+a1(z)f′+a0(z)f=0 with polynomial coefficients. In the present paper, it is shown by an example that a unit disc counterpart of such finite set does not contain all possible T- and M-orders of solutions, with respect to Nevanlinna characteristic and maximum modulus, if the coefficients are analytic functions belonging either to weighted Bergman spaces or to weighted Hardy spaces. In contrast to a finite set, possible intervals for T- and M-orders are introduced to give detailed information about the growth of solutions. Finally, these findings yield sharp lower bounds for the sums of T- and M-orders of functions in the solution bases.
ISSN:1085-3375
1687-0409
DOI:10.1155/2011/928194