Perfect secure domination in graphs

Let $G=(V,E)$ be a graph. A subset $S$ of $V$ is a dominating set of $G$ if every vertex in $Vsetminus  S$ is adjacent to a vertex in $S.$ A dominating set $S$ is called a secure dominating set if for each $vin Vsetminus S$ there exists $uin S$ such that $v$ is adjacent to $u$ and $S_1=(Ssetminus{u}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Categories and general algebraic structures with applications 2017-07, Vol.7 (Special Issue on the Occasion of Banaschewski's 90th Birthday (II)), p.125-140
Hauptverfasser: S.V. Divya Rashmi, Subramanian Arumugam, Kiran R. Bhutani, Peter Gartland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $G=(V,E)$ be a graph. A subset $S$ of $V$ is a dominating set of $G$ if every vertex in $Vsetminus  S$ is adjacent to a vertex in $S.$ A dominating set $S$ is called a secure dominating set if for each $vin Vsetminus S$ there exists $uin S$ such that $v$ is adjacent to $u$ and $S_1=(Ssetminus{u})cup {v}$ is a dominating set. If further the vertex $uin S$ is unique, then $S$ is called a perfect secure dominating set. The minimum cardinality of a perfect secure dominating set of $G$ is called the perfect  secure domination number of $G$ and is denoted by $gamma_{ps}(G).$ In this paper we initiate a study of this parameter and present several basic results.
ISSN:2345-5853
2345-5861