Detecting groundwater dependence and woody vegetation restoration with NDVI and moisture trend analyses in an Indonesian karst savanna
Woody vegetation restoration projects are an important feature of landscape function in Indonesian karst savannas. Understanding the relationship between available moisture and vegetation condition can assist with the planning and implementation of revegetation efforts. Working at vegetation restora...
Gespeichert in:
Veröffentlicht in: | Frontiers in remote sensing 2024-08, Vol.5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Woody vegetation restoration projects are an important feature of landscape function in Indonesian karst savannas. Understanding the relationship between available moisture and vegetation condition can assist with the planning and implementation of revegetation efforts. Working at vegetation restoration sites in East Nusa Tenggara, Indonesia, we applied a windowed cross-correlation method to mean values of NDVI to examine the lag between moisture input and NDVI response for both rainfall and soil moisture between 1999 and 2018. To test for increasing or decreasing trends in NDVI and rainfall time series, we undertook Mann–Kendall trend analyses. We identified increasing trends in Landsat 7 NDVI at two of four restoration sites, with annual increases in NDVI of 2.7 and 3.74 × 10
−4
respectively. We found that rainfall dependent sites had significant Pearson’s correlations with NDVI ranging from 0.52 to 0.71, while NDVI was not correlated with rainfall at shallow groundwater sites. There was a clear negative effect of the very dry period on all sites, and this was less pronounced at shallow groundwater sites. Wet years resulted in a positive response to NDVI across all sites, while the response was lower in very wet years with annual rainfall above 1,200 mm. We found that between 2 and 4 months of antecedent rainfall gave the highest correlation with NDVI, while for soil moisture the closest relationship was found with no lag and 1 month lag. Through this study, we demonstrated the applicability of using NDVI, rainfall, and soil moisture trend analyses to identify groundwater-dependent vegetation patches and monitor the effectiveness of vegetation restoration. |
---|---|
ISSN: | 2673-6187 2673-6187 |
DOI: | 10.3389/frsen.2024.1280712 |