Multi-UAV Cooperative Coverage Search for Various Regions Based on Differential Evolution Algorithm

In recent years, remotely controlling an unmanned aerial vehicle (UAV) to perform coverage search missions has become increasingly popular due to the advantages of the UAV, such as small size, high maneuverability, and low cost. However, due to the distance limitations of the remote control and endu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomimetics (Basel, Switzerland) Switzerland), 2024-07, Vol.9 (7), p.384
Hauptverfasser: Zeng, Hui, Tong, Lei, Xia, Xuewen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, remotely controlling an unmanned aerial vehicle (UAV) to perform coverage search missions has become increasingly popular due to the advantages of the UAV, such as small size, high maneuverability, and low cost. However, due to the distance limitations of the remote control and endurance of a UAV, a single UAV cannot effectively perform a search mission in various and complex regions. Thus, using a group of UAVs to deal with coverage search missions has become a research hotspot in the last decade. In this paper, a differential evolution (DE)-based multi-UAV cooperative coverage algorithm is proposed to deal with the coverage tasks in different regions. In the proposed algorithm, named DECSMU, the entire coverage process is divided into many coverage stages. Before each coverage stage, every UAV automatically plans its flight path based on DE. To obtain a promising flight trajectory for a UAV, a dynamic reward function is designed to evaluate the quality of the planned path in terms of the coverage rate and the energy consumption of the UAV. In each coverage stage, an information interaction between different UAVs is carried out through a communication network, and a distributed model predictive control is used to realize the collaborative coverage of multiple UAVs. The experimental results show that the strategy can achieve high coverage and a low energy consumption index under the constraints of collision avoidance. The favorable performance in DECSMU on different regions also demonstrate that it has outstanding stability and generality.
ISSN:2313-7673
2313-7673
DOI:10.3390/biomimetics9070384