rsHRF: A toolbox for resting-state HRF estimation and deconvolution

The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2021-12, Vol.244, p.118591-118591, Article 118591
Hauptverfasser: Wu, Guo-Rong, Colenbier, Nigel, Van Den Bossche, Sofie, Clauw, Kenzo, Johri, Amogh, Tandon, Madhur, Marinazzo, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hemodynamic response function (HRF) greatly influences the intra- and inter-subject variability of brain activation and connectivity, and might confound the estimation of temporal precedence in connectivity analyses, making its estimation necessary for a correct interpretation of neuroimaging studies. Additionally, the HRF shape itself is a useful local measure. However, most algorithms for HRF estimation are specific for task-related fMRI data, and only a few can be directly applied to resting-state protocols. Here we introduce rsHRF, a Matlab and Python toolbox that implements HRF estimation and deconvolution from the resting-state BOLD signal. We first provide an overview of the main algorithm, practical implementations, and then demonstrate the feasibility and usefulness of rsHRF by validation experiments with a publicly available resting-state fMRI dataset. We also provide tools for statistical analyses and visualization. We believe that this toolbox may significantly contribute to a better analysis and understanding of the components and variability of BOLD signals.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2021.118591