Urinary Extracellular Vesicles as a Readily Available Biomarker Source: A Simplified Stratification Method

Urine, a common source of biological markers in biomedical research and clinical diagnosis, has recently generated a new wave of interest. It has recently become a focus of study due to the presence of its content of extracellular vesicles (EVs). These uEVs have been found to reflect physiological a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-08, Vol.25 (15), p.8004
Hauptverfasser: Filipović, Lidija, Spasojević Savković, Milica, Prodanović, Radivoje, Matijašević Joković, Suzana, Stevanović, Sanja, Marco, Ario de, Kosanović, Maja, Brajušković, Goran, Popović, Milica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Urine, a common source of biological markers in biomedical research and clinical diagnosis, has recently generated a new wave of interest. It has recently become a focus of study due to the presence of its content of extracellular vesicles (EVs). These uEVs have been found to reflect physiological and pathological conditions in kidney, urothelial, and prostate tissue and can illustrate further molecular processes, leading to a rapid expansion of research in this field In this work, we present the advantages of an immunoaffinity-based method for uEVs' isolation with respect to the gold standard purification approach performed by differential ultracentrifugation [in terms of purity and antigen presence. The immunoaffinity method was made feasible by combining specific antibodies with a functionalized polymethacrylate polymer. Flow cytometry indicated a significant fluorescence shift, validating the presence of the markers (CD9, CD63, CD81) and confirming the effectiveness of the isolation method. Microscopy evaluations have shown that the morphology of the vesicles remained intact and corresponded to the expected shapes and dimensions of uEVs. The described protocol is inexpensive, fast, easy to process, has good reproducibility, and can be applied to further biological samples.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25158004