A Machine Learning-Based Assessment of Maize Silage Dry Matter Losses by Net-Bags Buried in Farm Bunker Silos

Estimating the dry matter losses (DML) of whole-plant maize (WPM) silage is a priority for sustainable dairy and beef farming. The study aimed to assess this loss of nutrients by using net-bags (n = 36) filled with freshly chopped WPM forage and buried in bunker silos of 12 Italian dairy farms for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture (Basel) 2022-06, Vol.12 (6), p.785
Hauptverfasser: Segato, Severino, Marchesini, Giorgio, Magrin, Luisa, Contiero, Barbara, Andrighetto, Igino, Serva, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Estimating the dry matter losses (DML) of whole-plant maize (WPM) silage is a priority for sustainable dairy and beef farming. The study aimed to assess this loss of nutrients by using net-bags (n = 36) filled with freshly chopped WPM forage and buried in bunker silos of 12 Italian dairy farms for an ensiling period of 275 days on average. The proximate composition of harvested WPM was submitted to mixed and polynomial regression models and a machine learning classification tree to estimate its ability to predict the WPM silage losses. Dry matter (DM), silage density, and porosity were also assessed. The WPM harvested at over 345 (g kg−1) and a DM density of less than 180 (kg of DM m−3) was related to DML values of over 7%. According to the results of the classification tree algorithm, the WPM harvested (g kg−1 DM) at aNDF higher than 373 and water-soluble carbohydrates lower than 104 preserves for the DML of maize silage. It is likely that the combination of these chemical variables determines the optimal maturity stage of WPM at harvest, allowing a biomass density and a fermentative pattern that limits the DML, especially during the ensiling period.
ISSN:2077-0472
2077-0472
DOI:10.3390/agriculture12060785