Singular Ramsey and Turán numbers

We say that a subgraph F of a graph G is singular if the degrees d_G(v) are all equal or all distinct for the vertices v of F. The singular Ramsey number Rs(F) is the smallest positive integer n such that, for every m at least n, in every edge 2-coloring of K_m, at least one of the color classes con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and applications of graphs (Statesboro, Ga.) Ga.), 2019, Vol.6 (1), p.1-32
Hauptverfasser: Caro, Yair, Tuza, Zsolt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We say that a subgraph F of a graph G is singular if the degrees d_G(v) are all equal or all distinct for the vertices v of F. The singular Ramsey number Rs(F) is the smallest positive integer n such that, for every m at least n, in every edge 2-coloring of K_m, at least one of the color classes contains F as a singular subgraph. In a similar flavor, the singular Turán number Ts(n,F) is defined as the maximum number of edges in a graph of order n, which does not contain F as a singular subgraph. In this paper we initiate the study of these extremal problems. We develop methods to estimate Rs(F) and Ts(n,F), present tight asymptotic bounds and exact results.
ISSN:2470-9859
2470-9859
DOI:10.20429/tag.2019.060101