Survey of solution dynamics in Src kinase reveals allosteric cross talk between the ligand binding and regulatory sites
The catalytic domain of protein tyrosine kinases can interconvert between active and inactive conformations in response to regulatory inputs. We recently demonstrated that Src kinase features an allosteric network that couples substrate-binding sites. However, the extent of conformational and dynami...
Gespeichert in:
Veröffentlicht in: | Nature communications 2017-12, Vol.8 (1), p.2160-15, Article 2160 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The catalytic domain of protein tyrosine kinases can interconvert between active and inactive conformations in response to regulatory inputs. We recently demonstrated that Src kinase features an allosteric network that couples substrate-binding sites. However, the extent of conformational and dynamic changes that are propagated throughout the kinase domain remains poorly understood. Here, we monitor by NMR the effect of conformationally selective inhibitors on kinase backbone dynamics. We find that inhibitor binding and activation loop autophosphorylation induces dynamic changes across the entire kinase. We identify a highly conserved amino acid, Gly449, that is necessary for Src activation. Finally, we show for the first time how the SH3–SH2 domains perturb the dynamics of the kinase domain in the context of the full length protein. We provide experimental support for long-range communication in Src kinase that leads to the relative stabilization of active or inactive conformations and modulation of substrate affinity.
Src is a prototypical signaling non-receptor protein tyrosine kinase that interconverts between distinct conformations. Here the authors use variants of the kinase-inhibitor dasatinib to define three specific conformational states of the Src kinase and shed insight on the effect of conformation-specific inhibitors on Src dynamics. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-017-02240-6 |