Performance Evaluations for Super-Resolution Mosaicing on UAS Surveillance Videos
Abstract Unmanned Aircraft Systems (UAS) have been widely applied for reconnaissance and surveillance by exploiting information collected from the digital imaging payload. The super-resolution (SR) mosaicing of low-resolution (LR) UAS surveillance video frames has become a critical requirement for U...
Gespeichert in:
Veröffentlicht in: | International journal of advanced robotic systems 2013-05, Vol.10 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Unmanned Aircraft Systems (UAS) have been widely applied for reconnaissance and surveillance by exploiting information collected from the digital imaging payload. The super-resolution (SR) mosaicing of low-resolution (LR) UAS surveillance video frames has become a critical requirement for UAS video processing and is important for further effective image understanding. In this paper we develop a novel super-resolution framework, which does not require the construction of sparse matrices. The proposed method implements image operations in the spatial domain and applies an iterated back-projection to construct super-resolution mosaics from the overlapping UAS surveillance video frames. The Steepest Descent method, the Conjugate Gradient method and the Levenberg-Marquardt algorithm are used to numerically solve the nonlinear optimization problem for estimating a super-resolution mosaic. A quantitative performance comparison in terms of computation time and visual quality of the super-resolution mosaics through the three numerical techniques is presented. |
---|---|
ISSN: | 1729-8806 1729-8814 |
DOI: | 10.5772/56534 |