SocialJGCF: Social Recommendation with Jacobi Polynomial-Based Graph Collaborative Filtering

With the flourishing of social media platforms, data in social networks, especially user-generated content, are growing rapidly, which makes it hard for users to select relevant content from the overloaded data. Recommender systems are thus developed to filter user-relevant content for better user e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-12, Vol.14 (24), p.12070
Hauptverfasser: Lu, Heng, Chen, Ziwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the flourishing of social media platforms, data in social networks, especially user-generated content, are growing rapidly, which makes it hard for users to select relevant content from the overloaded data. Recommender systems are thus developed to filter user-relevant content for better user experiences and also the commercial needs of social platform providers. Graph neural networks have been widely applied in recommender systems for better recommendation based on past interactions between users and corresponding items due to the graph structure of social data. Users might also be influenced by their social connections, which is the focus of social recommendation. Most works on recommendation systems try to obtain better representations of user embeddings and item embeddings. Compared with recommendation systems only focusing on interaction graphs, social recommendation has an additional task of combining user embedding from the social graph and interaction graph. This paper proposes a new method called SocialJGCF to address these problems, which applies Jacobi-Polynomial-Based Graph Collaborative Filtering (JGCF) to the propagation of the interaction graph and social graph, and a graph fusion is used to combine the user embeddings from the interaction graph and social graph. Experiments are conducted on two real-world datasets, epinions and LastFM. The result shows that SocialJGCF has great potential in social recommendation, especially for cold-start problems.
ISSN:2076-3417
2076-3417
DOI:10.3390/app142412070