Asymptotic series solution for plane poroelastic model with non-penetrating crack driven by hydraulic fracture
A new class of coupled poroelastic problems describing fluid-driven cracks (called fractures) subjected to non-penetration conditions between opposite crack faces (fracture walls) is considered in the incremental form. The nonlinear crack problem for a plane isotropic setting in a two-phase medium i...
Gespeichert in:
Veröffentlicht in: | Applications in engineering science 2022-06, Vol.10, p.100089, Article 100089 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new class of coupled poroelastic problems describing fluid-driven cracks (called fractures) subjected to non-penetration conditions between opposite crack faces (fracture walls) is considered in the incremental form. The nonlinear crack problem for a plane isotropic setting in a two-phase medium is expressed in polar coordinates as a variational inequality with respect to the solid phase displacement and the pore pressure. Applying nonlinear methods, the asymptotic theory and Fourier analysis, a semi-analytic solution given as the power series in the sector of angle 2π is proven using rigorous expansions with respect to the distance to the crack-tip. Here no logarithmic terms occur in the asymptotic expansion. Consequently, a square-root singularity for the poroelastic medium with a non-penetrating crack is derived, and the integral formulas for calculating the corresponding stress intensity factors are obtained. |
---|---|
ISSN: | 2666-4968 2666-4968 |
DOI: | 10.1016/j.apples.2022.100089 |