Effects of exposure to 3,6-DBCZ on neurotoxicity and AhR pathway during early life stages of zebrafish (Danio rerio)
Polyhalogenated carbazoles (PHCZs) are emerging environmental pollutants, yet limited information is available on their embryotoxicity and neurotoxicity. Therefore, the current work was performed to investigate the adverse effects of 3,6-dibromocarbazole (3,6-DBCZ), a typical PHCZs homolog, on the e...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2024-01, Vol.270, p.115892-115892, Article 115892 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polyhalogenated carbazoles (PHCZs) are emerging environmental pollutants, yet limited information is available on their embryotoxicity and neurotoxicity. Therefore, the current work was performed to investigate the adverse effects of 3,6-dibromocarbazole (3,6-DBCZ), a typical PHCZs homolog, on the early life stages of zebrafish larvae. It revealed that the 96-hour post-fertilization (hpf) median lethal concentration (LC
) value of 3,6-DBCZ in zebrafish larvae was determined to be 0.7988 mg/L. Besides, 3,6-DBCZ reduced survival rates at concentrations ≥ 1 mg/L and decreased hatching rates at ≥ 0.25 mg/L at 48 hpf. In behavior tests, it inhibited locomotor activities and reduced the frequency of recorded acceleration states in response to optesthesia (a sudden bright light stimulus) at concentrations ≥ 160 μg/L. Meanwhile, 3,6-DBCZ exposure decreased the frequency of recorded acceleration states in the startle response (tapping mode) at concentrations ≥ 6.4 μg/L. Pathologically, with the transgenic zebrafish model (hb9-eGFP), we observed a strikingly decreased axon length and number in motor neurons after 3,6-DBCZ treatment, which may be ascribed to the activation of the AhR signaling pathway, as evidenced by the molecular docking analysis and Microscale thermophoresis (MST) assay suggested that 3,6-DBCZ binding to AhR-ARNT2 compound proteins. Through interaction with AhR-ARNT, a striking reduction of the anti-oxidative stress (sod1/2, nqo1, nrf2) and neurodevelopment-related genes (elavl3, gfap, mbp, syn2a) were observed after 3,6-DBCZ challenge, accompanied by a marked increased inflammatory genes (TNFβ, IL1β, IL6). Collectively, our findings reveal a previously unrecognized adverse effect of 3,6-DBCZ on zebrafish neurodevelopment and locomotor behaviors, potentially mediated through the activation of the AhR pathway. Furthermore, it provides direct evidence for the toxic concentrations of 3,6-DBCZ and the potential target signaling in zebrafish larvae, which may be beneficial for the risk assessment of the aquatic ecosystems. |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2023.115892 |