An Extracellular Matrix Overlay Model for Bioluminescence Microscopy to Measure Single-Cell Heterogeneous Responses to Antiandrogens in Prostate Cancer Cells

Prostate cancer (PCa) displays diverse intra-tumoral traits, impacting its progression and treatment outcomes. This study aimed to refine PCa cell culture conditions for dynamic monitoring of androgen receptor (AR) activity at the single-cell level. We introduced an extracellular matrix-Matrigel (EC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors (Basel) 2024-04, Vol.14 (4), p.175
Hauptverfasser: Champagne, Audrey, Chebra, Imene, Jain, Pallavi, Ringuette Goulet, Cassandra, Lauzier, Annie, Guyon, Antoine, Neveu, Bertrand, Pouliot, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prostate cancer (PCa) displays diverse intra-tumoral traits, impacting its progression and treatment outcomes. This study aimed to refine PCa cell culture conditions for dynamic monitoring of androgen receptor (AR) activity at the single-cell level. We introduced an extracellular matrix-Matrigel (ECM-M) culture model, enhancing cellular tracking during bioluminescence single-cell imaging while improving cell viability. ECM-M notably tripled the traceability of poorly adherent PCa cells, facilitating robust single-cell tracking, without impeding substrate permeability or AR response. This model effectively monitored AR modulation by antiandrogens across various PCa cell lines. Single-cell imaging unveiled heterogeneous antiandrogen responses within populations, correlating non-responsive cell proportions with drug IC50 values. Integrating ECM-M culture with the PSEBC-TSTA biosensor enabled precise characterization of ARi responsiveness within diverse cell populations. Our ECM-M model stands as a promising tool to assess heterogeneous single-cell treatment responses in cancer, offering insights to link drug responses to intracellular signaling dynamics. This approach enhances our comprehension of the nuanced and dynamic nature of PCa treatment responses.
ISSN:2079-6374
2079-6374
DOI:10.3390/bios14040175