Supramolecular Annihilator with DPA Parallelly Arranged by Multiple Hydrogen-Bonding Interactions for Enhanced Triplet-Triplet Annihilation Upconversion

The triplet annihilator is a critical component for triplet-triplet annihilation upconversion (TTA-UC); both the photophysical properties of the annihilator and the intermolecular orientation have pivotal effects on the overall efficiency of TTA-UC. Herein, we synthesized two supramolecular annihila...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2024-05, Vol.29 (10), p.2203
Hauptverfasser: He, Qiuhui, Wei, Lingling, He, Cheng, Yang, Cheng, Wu, Wanhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The triplet annihilator is a critical component for triplet-triplet annihilation upconversion (TTA-UC); both the photophysical properties of the annihilator and the intermolecular orientation have pivotal effects on the overall efficiency of TTA-UC. Herein, we synthesized two supramolecular annihilators and by grafting 9,10-diphenylanthracene (DPA) fragments, which have been widely used as triplet annihilators for TTA-UC, on a macrocyclic host-pillar[5]arenes. In , the orientation of the two DPA units was random, while, in , the two DPA units were pushed to a parallel arrangement by intramolecular hydrogen-bonding interactions. The two compounds showed very similar photophysical properties and host-guest binding affinities toward electron-deficient guests, but showed totally different TTA-UC emissions. The UC quantum yield of could be optimized to 13.7% when an alkyl ammonia chain-attaching sensitizer was used, while, for , only 5.1% was achieved. Destroying the hydrogen-bonding interactions by adding MeOH to significantly decreased the UC emissions, demonstrating that the parallel orientations of the two DPA units contributed greatly to the TTA-UC emissions. These results should be beneficial for annihilator designs and provide a new promising strategy for enhancing TTA-UC emissions.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29102203