Global Dynamics and Optimal Control of a Fractional-Order SIV Epidemic Model with Nonmonotonic Occurrence Rate

This paper performs a detailed analysis and explores optimal control strategies for a fractional-order SIV epidemic model, incorporating a nonmonotonic incidence rate. In this paper, the population of vaccinated individuals is included in the disease dynamics model. After proving the non-negative bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-09, Vol.12 (17), p.2735
Hauptverfasser: Yan, Juhui, Wu, Wanqin, Miao, Qing, Tan, Xuewen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper performs a detailed analysis and explores optimal control strategies for a fractional-order SIV epidemic model, incorporating a nonmonotonic incidence rate. In this paper, the population of vaccinated individuals is included in the disease dynamics model. After proving the non-negative boundedness of the fractional-order SIV model, we focus on analyzing the equilibrium point characteristics of the model, delving into its existence, uniqueness, and stability analysis. In addition, our research includes formulating optimal control strategies specifically aimed at minimizing the number of infections while keeping costs as low as possible. To validate the theoretical findings and uncover the practical efficacy and prospects of control measures in mitigating epidemic spread, numerical simulations are performed.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12172735