An Armijo-Type Hard Thresholding Algorithm for Joint Sparse Recovery

Joint sparse recovery (JSR) in compressed sensing simultaneously recovers sparse signals with a common sparsity structure from their multiple measurement vectors obtained through a common sensing matrix. In this paper, we present an Armijo-type hard thresholding (AHT) algorithm for joint sparse reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.101765-101772
Hauptverfasser: Pan, Lili, Zhu, Xunzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Joint sparse recovery (JSR) in compressed sensing simultaneously recovers sparse signals with a common sparsity structure from their multiple measurement vectors obtained through a common sensing matrix. In this paper, we present an Armijo-type hard thresholding (AHT) algorithm for joint sparse recovery. Under the restricted isometry property (RIP), we show that the AHT can converge to a local minimizer of the optimization problem for JSR. Furthermore, we compute the AHT convergence rate with the above conditions. Numerical experiments show the good performance of the new algorithm for JSR.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3097216