Soft Coulomb gap and asymmetric scaling towards metal-insulator quantum criticality in multilayer MoS2

Quantum localization–delocalization of carriers are well described by either carrier–carrier interaction or disorder. When both effects come into play, however, a comprehensive understanding is not well established mainly due to complexity and sparse experimental data. Recently developed two-dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-05, Vol.9 (1), p.1-8, Article 2052
Hauptverfasser: Moon, Byoung Hee, Bae, Jung Jun, Joo, Min-Kyu, Choi, Homin, Han, Gang Hee, Lim, Hanjo, Lee, Young Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum localization–delocalization of carriers are well described by either carrier–carrier interaction or disorder. When both effects come into play, however, a comprehensive understanding is not well established mainly due to complexity and sparse experimental data. Recently developed two-dimensional layered materials are ideal in describing such mesoscopic critical phenomena as they have both strong interactions and disorder. The transport in the insulating phase is well described by the soft Coulomb gap picture, which demonstrates the contribution of both interactions and disorder. Using this picture, we demonstrate the critical power law behavior of the localization length, supporting quantum criticality. We observe asymmetric critical exponents around the metal-insulator transition through temperature scaling analysis, which originates from poor screening in insulating regime and conversely strong screening in metallic regime due to free carriers. The effect of asymmetric scaling behavior is weakened in monolayer MoS 2 due to a dominating disorder. The interplay between strong interactions and presence of disorder makes atomically thin transition metal dichalcogenides an ideal platform to study phase transitions and critical phenomena. Here, the authors observe asymmetric critical exponents around the metal-insulator-transition of multilayer MoS 2 .
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-04474-4