Identification of Intrinsically Disordered Proteins and Regions by Length-Dependent Predictors Based on Conditional Random Fields

Accurate identification of intrinsically disordered proteins/regions (IDPs/IDRs) is critical for predicting protein structure and function. Previous studies have shown that IDRs of different lengths have different characteristics, and several classification-based predictors have been proposed for pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy. Nucleic acids 2019-09, Vol.17, p.396-404
Hauptverfasser: Liu, Yumeng, Chen, Shengyu, Wang, Xiaolong, Liu, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate identification of intrinsically disordered proteins/regions (IDPs/IDRs) is critical for predicting protein structure and function. Previous studies have shown that IDRs of different lengths have different characteristics, and several classification-based predictors have been proposed for predicting different types of IDRs. Compared with these classification-based predictors, the previously proposed predictor IDP-CRF exhibits state-of-the-art performance for predicting IDPs/IDRs, which is a sequence labeling model based on conditional random fields (CRFs). Motivated by these methods, we propose a predictor called IDP-FSP, which is an ensemble of three CRF-based predictors called IDP-FSP-L, IDP-FSP-S, and IDP-FSP-G. These three predictors are specially designed to predict long, short, and generic disordered regions, respectively, and they are constructed based on different features. To the best of our knowledge, IDP-FSP is the first predictor that combines a sequence labeling algorithm with IDRs of different lengths. Experimental results using two independent test datasets show that IDP-FSP achieves better or at least comparable predictive performance with 26 existing state-of-the-art methods in this field, proving the effectiveness of IDP-FSP.
ISSN:2162-2531
2162-2531
DOI:10.1016/j.omtn.2019.06.004