Multi-integral representations for Jacobi functions of the first and second kind

AbstractOne may consider the generalization of Jacobi polynomials and the Jacobi function of the second kind to a general function where the degree is allowed to be a complex number instead of a non-negative integer. These functions are referred to as Jacobi functions. In a similar fashion as associ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arab journal of basic and applied sciences 2023-12, Vol.30 (1), p.583-592
Hauptverfasser: Cohl, Howard S., Costas-Santos, Roberto S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractOne may consider the generalization of Jacobi polynomials and the Jacobi function of the second kind to a general function where the degree is allowed to be a complex number instead of a non-negative integer. These functions are referred to as Jacobi functions. In a similar fashion as associated Legendre functions, these break into two categories, functions which are analytically continued from the real line segment [Formula: see text] and those analytically continued from the real ray [Formula: see text] Using properties of Gauss hypergeometric functions, we derive multi-derivative and multi-integral representations for the Jacobi functions of the first and second kind.
ISSN:2576-5299
2576-5299
DOI:10.1080/25765299.2023.2268911