Quantum chemical calculations of lithium-ion battery electrolyte and interphase species
Lithium-ion batteries (LIBs) represent the state of the art in high-density energy storage. To further advance LIB technology, a fundamental understanding of the underlying chemical processes is required. In particular, the decomposition of electrolyte species and associated formation of the solid e...
Gespeichert in:
Veröffentlicht in: | Scientific data 2021-08, Vol.8 (1), p.203-203, Article 203 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lithium-ion batteries (LIBs) represent the state of the art in high-density energy storage. To further advance LIB technology, a fundamental understanding of the underlying chemical processes is required. In particular, the decomposition of electrolyte species and associated formation of the solid electrolyte interphase (SEI) is critical for LIB performance. However, SEI formation is poorly understood, in part due to insufficient exploration of the vast reactive space. The Lithium-Ion Battery Electrolyte (LIBE) dataset reported here aims to provide accurate first-principles data to improve the understanding of SEI species and associated reactions. The dataset was generated by fragmenting a set of principal molecules, including solvents, salts, and SEI products, and then selectively recombining a subset of the fragments. All candidate molecules were analyzed at the
ω
B97X-V/def2-TZVPPD/SMD level of theory at various charges and spin multiplicities. In total, LIBE contains structural, thermodynamic, and vibrational information on over 17,000 unique species. In addition to studies of reactivity in LIBs, this dataset may prove useful for machine learning of molecular and reaction properties.
Measurement(s)
molecule • solid electrolyte interphase
Technology Type(s)
density functional theory • computational modeling technique
Factor Type(s)
bond type • charge • spin multiplicity
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.14915256 |
---|---|
ISSN: | 2052-4463 2052-4463 |
DOI: | 10.1038/s41597-021-00986-9 |