Quantifying F-actin patches in single melanoma cells using total-internal reflection fluorescence microscopy

Total-internal reflection fluorescence (TIRF) microscope is a unique technique for selective excitation of only those fluorophore molecules in a cellular environment, which are located at the sub-diffraction axial distance of a cell’s contact-area. Despite this prominent feature of the TIRF microsco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-11, Vol.12 (1), p.19993-19993, Article 19993
Hauptverfasser: Sheykhi, Elham, Shojaedin-Givi, Behnaz, Sajad, Batool, Naderi-Manesh, Hossein, Tavaddod, Sharareh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Total-internal reflection fluorescence (TIRF) microscope is a unique technique for selective excitation of only those fluorophore molecules in a cellular environment, which are located at the sub-diffraction axial distance of a cell’s contact-area. Despite this prominent feature of the TIRF microscope, making quantitative use of this technique has been a challenge, since the excitation intensity strongly depends on the axial position of a fluorophore molecule. Here, we present an easy-implemented data analysis method to quantitatively characterize the fluorescent signal, without considering the intensity-value. We use F-actin patches in single-melanoma cells as an example and define two quantities of elongation and surface density for F-actin patches at the contact-area of a melanoma cell. The elongation parameter can evaluate the dispersion of F-actin patches at the contact-area of a cell and is useful to classify the attaching, spreading, and expanding stages of a cell. Following that, we present the profile of the surface density of F-actin patches as a quantity to probe the spatio-temporal distribution of the F-actin patches at the contact-area of a cell. The data analysis methods that are proposed here will also be applicable in the image analysis of the other advanced optical microscopic methods.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-22632-z