COMPLEXITY OF SHORT GENERATING FUNCTIONS

We give complexity analysis for the class of short generating functions. Assuming #P $\not \subseteq$ FP/poly, we show that this class is not closed under taking many intersections, unions or projections of generating functions, in the sense that these operations can increase the bit length of coeff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2018-01, Vol.6, Article e1
Hauptverfasser: NGUYEN, DANNY, PAK, IGOR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give complexity analysis for the class of short generating functions. Assuming #P $\not \subseteq$ FP/poly, we show that this class is not closed under taking many intersections, unions or projections of generating functions, in the sense that these operations can increase the bit length of coefficients of generating functions by a super-polynomial factor. We also prove that truncated theta functions are hard for this class.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2017.29