COMPLEXITY OF SHORT GENERATING FUNCTIONS
We give complexity analysis for the class of short generating functions. Assuming #P $\not \subseteq$ FP/poly, we show that this class is not closed under taking many intersections, unions or projections of generating functions, in the sense that these operations can increase the bit length of coeff...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2018-01, Vol.6, Article e1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give complexity analysis for the class of short generating functions. Assuming #P
$\not \subseteq$
FP/poly, we show that this class is not closed under taking many intersections, unions or projections of generating functions, in the sense that these operations can increase the bit length of coefficients of generating functions by a super-polynomial factor. We also prove that truncated theta functions are hard for this class. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2017.29 |