An improvised analysis of smart data for IoT-based railway system using RFID

RFID (radio frequency identification) is a progressively adopted technology in today’s automated world. Wireless technologies have enabled contactless payments, tracking, identifying, and many more features in a system that can be introduced to build a smart environment. This work overviews the usag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatika 2024-01, Vol.65 (1), p.361-372
Hauptverfasser: Sudhakaran, Shirly, Maheswari, R, Kanchana Devi, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RFID (radio frequency identification) is a progressively adopted technology in today’s automated world. Wireless technologies have enabled contactless payments, tracking, identifying, and many more features in a system that can be introduced to build a smart environment. This work overviews the usage of the IoT (Internet of Things) platform for tracking passengers and enabling online payments through wireless sensors and RFID technology in Chennai Suburban Railways. The tracking system consists of an RFID reader that can locate and track passive as well as mobile objects attached with passive RFID tags. The proposed system incorporates the installation of RFID readers at every entrance and exit of the railway station, and every passenger carries their own RFID tags. This not only enables online payments for passengers but also helps the government in tracking the crowd for demand monitoring. The new methodology creates a digital workspace and enforces lawful safety regulations both for the administration and the consumers. A prototype of the proposed system is implemented in real-time to understand the workings of the system. Data collection is done through RFID tags that act as transit cards and an analysis for consumer demand is done using the DBSCAN (Density-Based Spatial Clustering of Application with Noise) algorithm with a Randomized KD-tree for the analysis of spatial and temporal patterns. A new algorithm, the iDBSCAN (improved Density-Based Spatial Clustering of Application with Noise) algorithm is proposed for faster performance on the datasets.
ISSN:0005-1144
1848-3380
DOI:10.1080/00051144.2023.2295141