Unveiling the Role of RNA Recognition Motif Proteins in Orchestrating Nucleotide-Binding Site and Leucine-Rich Repeat Protein Gene Pairs and Chloroplast Immunity Pathways: Insights into Plant Defense Mechanisms

In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair confers resistance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-05, Vol.25 (10), p.5557
Hauptverfasser: Gu, Fengwei, Han, Zhikai, Zou, Xiaodi, Xie, Huabin, Chen, Chun, Huang, Cuihong, Guo, Tao, Wang, Jiafeng, Wang, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair confers resistance to rice blast disease by interacting with the transcription factor OsBIHD1, consequently leading to the upregulation of hormone pathways. In the present study, we identified an RNA recognition motif (RRM) protein, OsRRM2, which interacted with Pik -H4 and Pik -H4 in vesicles and chloroplasts. OsRRM2 exhibited a modest influence on -mediated rice blast resistance by upregulating resistance genes and genes associated with chloroplast immunity. Moreover, the RNA-binding sequence of OsRRM2 was elucidated using systematic evolution of ligands by exponential enrichment. Transcriptome analysis further indicated that OsRRM2 promoted RNA editing of the chloroplastic gene . Collectively, our findings uncovered a chloroplastic RRM protein that facilitated the translocation of the NLR gene pair and modulated chloroplast immunity, thereby bridging the gap between ETI and chloroplast immunity.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25105557