Generation and characterization of cardiac valve endothelial-like cells from human pluripotent stem cells

The cardiac valvular endothelial cells (VECs) are an ideal cell source that could be used for making the valve organoids. However, few studies have been focused on the derivation of this important cell type. Here we describe a two-step chemically defined xeno-free method for generating VEC-like cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-09, Vol.4 (1), p.1039-1039, Article 1039
Hauptverfasser: Cheng, LinXi, Xie, MingHui, Qiao, WeiHua, Song, Yu, Zhang, YanYong, Geng, YingChao, Xu, WeiLin, Wang, Lin, Wang, Zheng, Huang, Kai, Dong, NianGuo, Sun, YuHua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cardiac valvular endothelial cells (VECs) are an ideal cell source that could be used for making the valve organoids. However, few studies have been focused on the derivation of this important cell type. Here we describe a two-step chemically defined xeno-free method for generating VEC-like cells from human pluripotent stem cells (hPSCs). HPSCs were specified to KDR + /ISL1 + multipotent cardiac progenitors (CPCs), followed by differentiation into valve endothelial-like cells (VELs) via an intermediate endocardial cushion cell (ECC) type. Mechanistically, administration of TGFb1 and BMP4 may specify VEC fate by activating the NOTCH/WNT signaling pathways and previously unidentified targets such as ATF3 and KLF family of transcription factors. When seeded onto the surface of the de-cellularized porcine aortic valve (DCV) matrix scaffolds, hPSC-derived VELs exhibit superior proliferative and clonogenic potential than the primary VECs and human aortic endothelial cells (HAEC). Our results show that hPSC-derived valvular cells could be efficiently generated from hPSCs, which might be used as seed cells for construction of valve organoids or next generation tissue engineered heart valves. Cheng et al. provide a detailed characterization of the differentiation of human pluripotent stem cells to valve endothelial cells and their function. Their results show that the valve endothelial-like cells express key markers for valve endothelial cells, exhibiting proliferative and clonogenic potential.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-02571-7