On twin edge colorings in m-ary trees

Let  k ≥ 2  be an integer and  G  be a connected graph of order at least  3 . A twin  k -edge coloring of  G  is a proper edge coloring of  G  that uses colors from  ℤk  and that induces a proper vertex coloring on  G  where the color of a vertex  v  is the sum (in  ℤk ) of the colors of the edges i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of graph theory and applications 2022-01, Vol.10 (1), p.131-149
Hauptverfasser: Tolentino, Jayson De Luna, Marcelo, Reginaldo M., Tolentino, Mark Anthony C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let  k ≥ 2  be an integer and  G  be a connected graph of order at least  3 . A twin  k -edge coloring of  G  is a proper edge coloring of  G  that uses colors from  ℤk  and that induces a proper vertex coloring on  G  where the color of a vertex  v  is the sum (in  ℤk ) of the colors of the edges incident with  v . The smallest integer  k  for which  G  has a twin  k -edge coloring is the twin chromatic index of  G  and is denoted by  χ′t(G) . In this paper, we study the twin edge colorings in  m -ary trees for  m ≥ 2 ; in particular, the twin chromatic indexes of full  m -ary trees that are not stars,  r -regular trees for even  r ≥ 2 , and generalized star graphs that are not paths nor stars are completely determined. Moreover, our results confirm the conjecture that  χ′t(G)≤Δ(G)+2  for every connected graph  G  (except  C5 ) of order at least  3 , for all trees of order at least  3 .
ISSN:2338-2287
2338-2287
DOI:10.5614/ejgta.2022.10.1.8