Porous metal oxides derived from Cu–Al layered double hydroxide as an efficient heterogeneous catalyst for the Friedel–Crafts alkylation of indoles with benzaldehydes under microwave irradiation
Four Cu-Mg-Al mixed metal oxides (MMO) were synthesized through the calcination of layered double hydroxides (LDHs). These catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller surface area (BET), a...
Gespeichert in:
Veröffentlicht in: | Heliyon 2018-11, Vol.4 (11), p.e00966-e00966, Article e00966 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Four Cu-Mg-Al mixed metal oxides (MMO) were synthesized through the calcination of layered double hydroxides (LDHs). These catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller surface area (BET), and inductively coupled plasma optical emission spectrometer (ICP-OES). The catalytic efficiency of porous metal oxides derived from LDHs has been tested successfully for the synthesis of bis(indolyl)methanes via the Friedel–Crafts alkylation of indoles with aromatic aldehydes under solvent-free microwave irradiation. The Cu-Al MMO showed the best catalytic activity to produce the expected products up to 98% yield and 100% selectivity for only 20 min under solvent-free microwave irradiation. Moreover, the catalyst can be recovered quickly from the reaction mixture by filtration and reused several times without significant loss of the reactivity. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2018.e00966 |