Porous metal oxides derived from Cu–Al layered double hydroxide as an efficient heterogeneous catalyst for the Friedel–Crafts alkylation of indoles with benzaldehydes under microwave irradiation

Four Cu-Mg-Al mixed metal oxides (MMO) were synthesized through the calcination of layered double hydroxides (LDHs). These catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller surface area (BET), a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2018-11, Vol.4 (11), p.e00966-e00966, Article e00966
Hauptverfasser: Nguyen, Thanh-Truc Hoang, Nguyen, Xuan-Trang Thi, Nguyen, Chinh Quoc, Tran, Phuong Hoang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Four Cu-Mg-Al mixed metal oxides (MMO) were synthesized through the calcination of layered double hydroxides (LDHs). These catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller surface area (BET), and inductively coupled plasma optical emission spectrometer (ICP-OES). The catalytic efficiency of porous metal oxides derived from LDHs has been tested successfully for the synthesis of bis(indolyl)methanes via the Friedel–Crafts alkylation of indoles with aromatic aldehydes under solvent-free microwave irradiation. The Cu-Al MMO showed the best catalytic activity to produce the expected products up to 98% yield and 100% selectivity for only 20 min under solvent-free microwave irradiation. Moreover, the catalyst can be recovered quickly from the reaction mixture by filtration and reused several times without significant loss of the reactivity.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2018.e00966