Identification and validation of 5-methylcytosine-associated genes in diffuse large B-cell lymphoma

5-methylcytosine modifications play a significant role in carcinogenesis; however, studies exploring 5-methylcytosine-related genes in diffuse large B-cell lymphoma patients are lacking. In this study, we aimed to understand the potential role and clinical prognostic impact of 5-methylcytosine regul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2023-11, Vol.9 (11), p.e22209-e22209, Article e22209
Hauptverfasser: Xing, Cheng, Zhu, Shicong, Yan, Wenzhe, zhu, Hongkai, Huang, Zineng, Zhao, Yan, Guo, Wancheng, Zhang, Huifang, Yin, Le, Ruan, Xueqin, Deng, Zeyue, Wang, Peilong, Cheng, Zhao, Wang, Zhihua, Peng, Hongling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:5-methylcytosine modifications play a significant role in carcinogenesis; however, studies exploring 5-methylcytosine-related genes in diffuse large B-cell lymphoma patients are lacking. In this study, we aimed to understand the potential role and clinical prognostic impact of 5-methylcytosine regulators in diffuse large B-cell lymphoma and identify a prognostic biomarker based on 5-methylcytosine-associated genes. Gene expression profiles and corresponding clinical information of diffuse large B-cell lymphoma patients and normal controls were obtained from The Cancer Genome Atlas, Gene Expression Omnibus, and Genotype-Tissue Expression databases. Diffuse large B-cell lymphoma was divided into three clusters according to the 5-methylcytosine regulators, and differentially expressed genes were screened among the three clusters. Univariate Cox and Lasso-Cox regression analyses were used to screen prognostic genes and construct a prognostic risk model. Kaplan-Meier curve analysis, univariate and multivariate Cox regression analyses, and time-dependent receiver operator characteristic curve analysis were used to evaluate prognostic factors. GSVA was used to enrich potential pathways associated with 5-methylcytosine modification patterns. SsGSEA and CIBERSORT were used to assess immune cell infiltration. Six 5-methylcytosine-related genes (TUBB4A, CD3E, ZNF681, HAP1, IL22RA2, and POSTN) were used to construct a prognostic risk model, which was proved to have a good predictive effect. In addition, univariate and multivariate Cox regression risk scores were independent prognostic factors for diffuse large B-cell lymphoma. Further analysis showed that the 5-methylcytosine risk score was significantly correlated with immune cell infiltration and immune checkpoint of diffuse large B-cell lymphoma. Our study reveals for the first time a potential role for 5-methylcytosine modifications in diffuse large B-cell lymphoma, provides novel insights for future studies on diffuse large B-cell lymphoma, and offers potential prognostic biomarkers and therapeutic targets for patients with diffuse large B-cell lymphoma. •Finding prognostic markers is critical for the detection and treatment of DLBCL patients.•M5C modification plays an important role in the occurrence and development of DLBCL.•Construction of a DLBCL prognostic model of m5C-related genes for the first time.•The strong relationship between m5C risk and the immune microenvironment reveals its potential link to immu
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e22209