Aptamer-Hytac Chimeras for Targeted Degradation of SARS-CoV-2 Spike-1

The development of novel tools to tackle viral processes has become a central focus in global health, during the COVID-19 pandemic. The spike protein is currently one of the main SARS-CoV-2 targets, owing to its key roles in infectivity and virion formation. In this context, exploring innovative str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cells (Basel, Switzerland) Switzerland), 2024-10, Vol.13 (21), p.1767
Hauptverfasser: Fàbrega, Carme, Gallisà-Suñé, Núria, Zuin, Alice, Ruíz, Juan Sebastián, Coll-Martínez, Bernat, Fabriàs, Gemma, Eritja, Ramon, Crosas, Bernat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of novel tools to tackle viral processes has become a central focus in global health, during the COVID-19 pandemic. The spike protein is currently one of the main SARS-CoV-2 targets, owing to its key roles in infectivity and virion formation. In this context, exploring innovative strategies to block the activity of essential factors of SARS-CoV-2, such as spike proteins, will strengthen the capacity to respond to current and future threats. In the present work, we developed and tested novel bispecific molecules that encompass: (i) oligonucleotide aptamers S901 and S702, which bind to the spike protein through its S1 domain, and (ii) hydrophobic tags, such as adamantane and tert-butyl-carbamate-based ligands. Hydrophobic tags have the capacity to trigger the degradation of targets recruited in the context of a proteolytic chimera by activating quality control pathways. We observed that S901-adamantyl conjugates promote the degradation of the S1 spike domain, stably expressed in human cells by genomic insertion. These results highlight the suitability of aptamers as target-recognition molecules and the robustness of protein quality control pathways triggered by hydrophobic signals, and place aptamer-Hytacs as promising tools for counteracting coronavirus progression in human cells.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells13211767