Superior Eccentric Domination Polynomial
In this paper we introduce the superior eccentric domination polynomial SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l} where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and \gamma_{sed}(G) is superior eccentric domination number. We find S...
Gespeichert in:
Veröffentlicht in: | Ratio mathematica 2023-03, Vol.46 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng ; ita |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce the superior eccentric domination polynomial SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l} where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and \gamma_{sed}(G) is superior eccentric domination number. We find SED(G, φ) for different standard graphs. Results are presented. |
---|---|
ISSN: | 1592-7415 2282-8214 |
DOI: | 10.23755/rm.v46i0.1082 |