Superior Eccentric Domination Polynomial

In this paper we introduce the superior eccentric domination polynomial SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l} where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and \gamma_{sed}(G) is superior eccentric domination number. We find S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ratio mathematica 2023-03, Vol.46
Hauptverfasser: Tejaskumar, R, A Mohamed Ismayil
Format: Artikel
Sprache:eng ; ita
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce the superior eccentric domination polynomial SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l} where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and \gamma_{sed}(G) is superior eccentric domination number. We find SED(G, φ) for different standard graphs. Results are presented.
ISSN:1592-7415
2282-8214
DOI:10.23755/rm.v46i0.1082