Variational quantum evolution equation solver

Variational quantum algorithms offer a promising new paradigm for solving partial differential equations on near-term quantum computers. Here, we propose a variational quantum algorithm for solving a general evolution equation through implicit time-stepping of the Laplacian operator. The use of enco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-06, Vol.12 (1), p.10817-10817, Article 10817
Hauptverfasser: Leong, Fong Yew, Ewe, Wei-Bin, Koh, Dax Enshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Variational quantum algorithms offer a promising new paradigm for solving partial differential equations on near-term quantum computers. Here, we propose a variational quantum algorithm for solving a general evolution equation through implicit time-stepping of the Laplacian operator. The use of encoded source states informed by preceding solution vectors results in faster convergence compared to random re-initialization. Through statevector simulations of the heat equation, we demonstrate how the time complexity of our algorithm scales with the Ansatz volume for gradient estimation and how the time-to-solution scales with the diffusion parameter. Our proposed algorithm extends economically to higher-order time-stepping schemes, such as the Crank–Nicolson method. We present a semi-implicit scheme for solving systems of evolution equations with non-linear terms, such as the reaction–diffusion and the incompressible Navier–Stokes equations, and demonstrate its validity by proof-of-concept results.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-14906-3