ICESat-2 Pointing Calibration and Geolocation Performance

ICESat-2 science requirements are dependent on the accurate real-time pointing control (i.e. geolocation control) and post-processed geolocation knowledge of the laser altimeter surface returns. Pre-launch pointing alignment errors and post-launch pointing alignment variation result in large geoloca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and Space Science 2021-03, Vol.8 (3), p.n/a
Hauptverfasser: Luthcke, S. B., Thomas, T. C., Pennington, T. A., Rebold, T. W., Nicholas, J. B., Rowlands, D. D., Gardner, A. S., Bae, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ICESat-2 science requirements are dependent on the accurate real-time pointing control (i.e. geolocation control) and post-processed geolocation knowledge of the laser altimeter surface returns. Pre-launch pointing alignment errors and post-launch pointing alignment variation result in large geolocation errors that must be calibrated on orbit. In addition, the changing sun-orbit geometry causes thermal-mechanical forced laser frame alignment variations at the orbit period and trends from days, weeks and months. Early mission analysis computed precise post-launch laser beam alignment calibration. The alignment calibration was uploaded to the spacecraft and enabled the pointing control performance to achieve 4.4 ± 6.0 m, a significant improvement over the 45 m (1 σ) mission requirement. Laser frame alignment calibrations are used to reduce the alignment bias and time variation, as well as the orbital variation contributions to geolocation knowledge error from 6 m to 1.7 m (1 σ). Relative beam alignment of the six beams is calibrated and shown to contribute between 0.5 ± 0.1 m and 2.4 ± 0.2 m of remaining geolocation knowledge error. Independent geolocation assessment based on comparison to high-resolution digital elevation models agrees well with the calibration geolocation error estimates. The analysis demonstrates the ICESat-2 mission is performing far better than its geolocation knowledge requirement of 6.5 m (1 σ) after the laser frame alignment bias variation and orbital variation calibrations have been applied. Remaining geolocation error is beam dependent and ranges from 2.5 m for beam 6 to 4.4 m for beam 2 (mean + 1 σ).
ISSN:2333-5084
2333-5084
DOI:10.1029/2020EA001494