Post-Synthetic and In Situ Vacancy Repairing of Iron Hexacyanoferrate Toward Highly Stable Cathodes for Sodium-Ion Batteries

Highlights Post-synthetic and in-situ vacancy repairing strategies effectively decrease the defects in FeHCF. Vacancy reduction improves the structure and cycling stability of FeHCF. Vacancy reduction boosts the capacity contribution from low-spin Fe in FeHCF. Iron hexacyanoferrate (FeHCF) is a prom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano-Micro Letters 2022-12, Vol.14 (1), p.9-9, Article 9
Hauptverfasser: Wan, Min, Zeng, Rui, Meng, Jingtao, Cheng, Zexiao, Chen, Weilun, Peng, Jiayu, Zhang, Wuxing, Huang, Yunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highlights Post-synthetic and in-situ vacancy repairing strategies effectively decrease the defects in FeHCF. Vacancy reduction improves the structure and cycling stability of FeHCF. Vacancy reduction boosts the capacity contribution from low-spin Fe in FeHCF. Iron hexacyanoferrate (FeHCF) is a promising cathode material for sodium-ion batteries. However, FeHCF always suffers from a poor cycling stability, which is closely related to the abundant vacancy defects in its framework. Herein, post-synthetic and in-situ vacancy repairing strategies are proposed for the synthesis of high-quality FeHCF in a highly concentrated Na 4 Fe(CN) 6 solution. Both the post-synthetic and in-situ vacancy repaired FeHCF products (FeHCF-P and FeHCF-I) show the significant decrease in the number of vacancy defects and the reinforced structure, which can suppress the side reactions and activate the capacity from low-spin Fe in FeHCF. In particular, FeHCF-P delivers a reversible discharge capacity of 131 mAh g −1 at 1 C and remains 109 mAh g −1 after 500 cycles, with a capacity retention of 83%. FeHCF-I can deliver a high discharge capacity of 158.5 mAh g −1 at 1 C. Even at 10 C, the FeHCF-I electrode still maintains a discharge specific capacity of 103 mAh g −1 and retains 75% after 800 cycles. This work provides a new vacancy repairing strategy for the solution synthesis of high-quality FeHCF.
ISSN:2311-6706
2150-5551
DOI:10.1007/s40820-021-00742-z