A mechano-osmotic feedback couples cell volume to the rate of cell deformation

Mechanics has been a central focus of physical biology in the past decade. In comparison, how cells manage their size is less understood. Here, we show that a parameter central to both the physics and the physiology of the cell, its volume, depends on a mechano-osmotic coupling. We found that cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eLife 2022-04, Vol.11
Hauptverfasser: Venkova, Larisa, Vishen, Amit Singh, Lembo, Sergio, Srivastava, Nishit, Duchamp, Baptiste, Ruppel, Artur, Williart, Alice, Vassilopoulos, Stéphane, Deslys, Alexandre, Garcia Arcos, Juan Manuel, Diz-Muñoz, Alba, Balland, Martial, Joanny, Jean-François, Cuvelier, Damien, Sens, Pierre, Piel, Matthieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanics has been a central focus of physical biology in the past decade. In comparison, how cells manage their size is less understood. Here, we show that a parameter central to both the physics and the physiology of the cell, its volume, depends on a mechano-osmotic coupling. We found that cells change their volume depending on the rate at which they change shape, when they spontaneously spread or when they are externally deformed. Cells undergo slow deformation at constant volume, while fast deformation leads to volume loss. We propose a mechanosensitive pump and leak model to explain this phenomenon. Our model and experiments suggest that volume modulation depends on the state of the actin cortex and the coupling of ion fluxes to membrane tension. This mechano-osmotic coupling defines a membrane tension homeostasis module constantly at work in cells, causing volume fluctuations associated with fast cell shape changes, with potential consequences on cellular physiology.
ISSN:2050-084X
2050-084X
DOI:10.7554/elife.72381